

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 268 (2007) 139-147

www.elsevier.com/locate/molcata

Enhancement of selectivity for preferential CO oxidation over SO₂-pretreated Ru/Al₂O₃ catalyst by the presence of sulfur compounds

Hidenobu Wakita^{a,*}, Tatsuya Takeguchi^b, Wataru Ueda^b

^a Living Environment Development Center, Matsushita Electric Industrial Co. Ltd., Moriguchi, Osaka 570-8501, Japan ^b Catalysis Research Center, Hokkaido University, N21-W10 Sapporo 001-0021, Japan

Received 18 August 2006; received in revised form 8 December 2006; accepted 11 December 2006 Available online 15 December 2006

Abstract

The preferential CO oxidation on a monolith Ru/Al₂O₃ catalyst pretreated with SO₂ in the reactant gas was investigated in the presence/absence of 0.21–20 ppm sulfur compounds (SO₂ or H₂S). In the presence of 2.1 ppm sulfur compound, CO was preferentially oxidized over the SO₂-pretreated catalyst at 150 °C. On the other hand, in the absence of sulfur compounds, the H₂ oxidation was promoted. By in situ IR measurements, multicarbonyl species and SO₄²⁻ species were found on Ru in the presence of SO₂. The presence of multicarbonyl species at a high frequency (2154 cm⁻¹) and that of SO₄²⁻ species on Ru suggested that Ru was oxidized. Since the rate of CO oxidation was low on oxidized Ru, the selectivity for CO oxidation was low over the SO₂-pretreated catalyst in the absence of sulfur compounds. On the other hand, the increase in the selectivity in the presence of sulfur compounds suppressed the migration of dissociatively adsorbed H atom on Ru or decreased the H atoms next to adsorbed O atom for the H₂ oxidation.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Preferential CO oxidation; SO2; H2S; Ru/Al2O3 catalyst; In situ IR

1. Introduction

 H_2 is expected to be one of the clean energy resources, if it can be produced from the solar energy, natural energy, and bioenergy without CO₂ evolution. However, the infrastructure for domestic use of H₂ has not been developed. To consume energy effectively, residential polymer electrolyte fuel cell (PEFC) cogeneration systems using natural gas, liquefied petroleum gas, or kerosene as H₂ sources have attracted much attention. The fuel processor of the system normally comprises a desulfurizer, a steam reformer, a shift converter, and a preferential CO oxidation (PROX) unit. Since just a small amount of CO poisons the anode catalyst for PEFC, the CO concentration in the reformed fuel gas must be reduced to less than 10 ppm by the water-gas shift reaction and the PROX. The stoichiometric $[O_2]/[CO]$ ratio is 0.5 for the CO oxidation; however, it is necessary to supply excess O₂ to achieve high CO conversion for the PROX in H₂-rich gas [1,2]. Thus the PROX is usually conducted at the $[O_2]/[CO]$ ratio of 1.5–2.5, though excess O_2

1381-1169/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.12.017

consumes H_2 and the selectivity for CO oxidation is as low as 20–33%.

For residential use, long-term durability over 10 years is required [3]; however, it has not been ensured yet. In addition, only a few studies on the deactivation of the PROX catalyst have been reported [4–6], since the PROX is not needed for phosphoric acid fuel cell systems. For the PROX, contaminants in air, such as SO₂ and H₂S, may deactivate the catalyst. In addition, for autothermal reforming of liquid fuels, which usually contain sulfur compounds, H₂S is supplied to the subsequent catalysts [7]. Though Cu–ZnO catalysts for the water–gas shift reaction have large absorption capacity for H₂S, some catalysts cannot absorb H₂S. Therefore, we have investigated the influence of sulfur compounds (SO2 and H2S) over the monolith Ru/Al2O3 and Pt/Al₂O₃ catalysts [8]. The supply of 4.3–48 ppm sulfur compounds to the Ru/Al₂O₃ catalyst for 100-350 min decreased the CO conversion. Most of the sulfur compounds were oxidized to SO_4^{2-} species, which migrated to the support. During the SO_2 poisoning, parts of the Ru sites strongly adsorbed the SO₄²⁻ species, and the CO oxidation was suppressed.

In some cases of practical use, contaminated air is supplied to the PROX catalysts for a long term. In addition, the composition of the contaminants is not always the same. From this

^{*} Corresponding author. Tel.: +81 6 6906 2430; fax: +81 6 6906 2875. *E-mail address:* wakita.h@jp.panasonic.com (H. Wakita).

point of view, the Ru/Al₂O₃ catalyst was employed for the reaction in the presence of SO₂ for a long term (SO₂ pretreatment), and then the sulfur compound was intermittently supplied to the SO₂-pretreated catalyst. In this work, the first SO₂ poisoning is designated as the SO₂ pretreatment, though the reaction conditions of the pretreatment are the same as those for the PROX, except for the coexistent SO₂. Interestingly, the SO₂-pretreated catalyst showed significant changes in the selectivity for CO oxidation caused by sulfur compounds. In this study, the catalytic behavior after the pretreatment is reported in detail, and the mechanisms are discussed on the basis of in situ IR spectra.

2. Experimental

2.1. Catalyst preparation

Catalysts were prepared by the impregnation method described in detail elsewhere [8]. By impregnating a θ -Al₂O₃ support with an aqueous solution of RuNO(NO₃)_{*x*}, 2.0 wt% Ru/Al₂O₃ catalyst powder thus obtained was supported on cordierite honeycombs (20 mm diameter; 10 mm thickness; 400 cell/in.²) with an Al₂O₃-sol binder. The prepared mono-lith Ru/Al₂O₃ catalyst with Ru loading of 1.6 g/l was employed for transient response tests in a fixed bed reactor.

For the in situ IR measurements, $3.8 \text{ wt}\% \text{ Ru}/\text{Al}_2\text{O}_3$ catalyst powder was prepared.

2.2. Reaction tests

Catalytic activities were measured in a fixed bed reactor. The reactant gas was 51.5 vol.% H₂, 0.3 vol.% CO, 12.9 vol.% CO₂, 0.5 vol.% O₂, 6.0 vol.% N₂, and 28.8 vol.% H₂O at an [O₂]/[CO] ratio of 1.5, which simulates the steam-reformed natural gas after the shift converter. The pretreatment reaction was conducted in the presence of 20 ppm SO₂ in the reactant gas at GHSV = $9260 h^{-1}$ and ca. $150 \degree$ C for 60 h.

After the pretreatment, the above-mentioned reactant gas without sulfur compounds was continuously fed to the SO₂pretreated Ru/Al₂O₃ catalyst at ca. 150 °C for 15–23 h. Then 5.0–500 ppm SO₂ or H₂S diluted with N₂ was intermittently added to the reactant gas. The concentration of the sulfur compound was 0.21-20 ppm in the reactant gas, which was corresponding to 8.7-830 ppm in air. When the sulfur compound was not added to the reactant gas, N2 was fed instead. The reaction was usually conducted at GHSV = 9260 h⁻¹ and ca. 150 °C. The reaction temperatures were measured with a thermocouple in contact with the top of the catalyst bed. When the $[O_2]/[CO]$ ratio was changed, the air flow rate was changed. The method of the gas composition analysis was described in detail earlier [8]. The selectivity for CO oxidation was defined by the following equation: $S = \{(inlet CO concentration - outlet CO concentration) - outlet CO concentration - outlet - outlet$ tion – outlet CH₄ concentration)/2 \times 100/(inlet O₂ concentration - outlet O2 concentration). However, the outlet CH4 concentration was negligible under any conditions in this study.

The temperature dependence of catalytic activities was also measured in the presence/absence of 2.1 ppm sulfur compounds by lowering the catalyst temperature stepwise from 200 to 90 $^{\circ}$ C.

2.3. Catalyst characterization

IR spectra were obtained with an FTIR spectrometer (FTIR 8200, Shimadzu Corp.) equipped with a DRIFT apparatus (model 0030-103, Spectra-Tech Inc.) having CaF₂ windows. The 3.8 wt% Ru/Al₂O₃ catalyst without the SO₂ pretreatment was reduced at 200 °C for 30 min in a 5 vol.% H₂/He flow, and cooled to 150 °C. After the background spectrum was taken in a He flow, a spectrum was taken at 150 °C in a reactant gas flow (gas composition (I): 75.5 vol.% H₂, 0.5 vol.% CO, 19.0 vol.% CO₂, 0.7 vol.% O₂, 2.7 vol.% N₂, and 1.6 vol.% H₂O). Next, SO_2 diluted with N_2 was added to the reactant gas for 150 min (SO₂ pretreatment), and the IR spectra were recorded. The gas composition during the SO₂ pretreatment was 65.6 vol.% H₂, 0.4 vol.% CO, 16.5 vol.% CO₂, 0.6 vol.% O₂, 15.5 vol.% N₂, 1.4 vol.% H₂O, and 66 ppm SO₂ (gas composition (II)). After the SO_2 pretreatment, the reaction (gas composition (I)) was continuously carried out for 70 min. Then SO₂ was re-supplied to the SO₂-pretreated catalyst (gas composition (II)).

The CO adsorption on the pretreated/fresh catalysts was also conducted at 50 °C by the pulse method on an automatic gas adsorption apparatus (R6015, Okura Riken Co. Ltd.). Before the measurements, the catalysts were reduced at 200 °C for 15 min in a H₂ flow.

3. Results

3.1. Changes in the catalytic activity caused by SO_2

As shown in Table 1, the fresh monolith Ru/Al₂O₃ catalyst without SO₂ pretreatment showed ~100% conversions of both CO and O₂ at the [O₂]/[CO] ratio of 1.5 and 155 °C (I), and neither of conversions changed 0.5 h after the start of the pretreatment with 20 ppm SO₂ (II) even in the presence of SO₂. However, the CO and O₂ conversions decreased to 75.0% and 37.7% at 60 h, respectively (III). In addition, the temperature of the top of the catalyst bed decreased from 155 to 142 °C at 60 h due to the suppression of the oxidations of CO and H₂. As described above, the SO₂ pretreatment for 60 h was conducted.

Then the supply of SO_2 was interrupted and the reaction was continuously conducted over the SO₂-pretreated catalyst in the absence of SO₂ for 22 h. The O₂ conversion increased to 99.4% at 22 h, though the CO conversion decreased further to 65.5% (IV). The catalyst temperature increased to 151 °C with an increase in the O_2 conversion. Therefore, the interruption of SO₂ promoted the H₂ oxidation. Next, 20 ppm SO₂ was resupplied, which increased the CO conversion with a decrease in the O₂ conversion. A high CO conversion (95.7%) was attained with a low O_2 conversion (56.0%) (V) 1.5 h after the resumption of the SO_2 supply. Thus the selectivity for CO oxidation significantly increased to 52.2%. However, a long-term supply of 20 ppm SO₂ (24 h) gradually decreased the CO and O₂ conversions to 77.1% and 45.4%, respectively (VI). Interestingly, the selectivity was very high (56.2%) even at this moment. The interruption of SO₂ promoted the H₂ oxidation again. Next, SO₂ of low concentration (2.1 ppm) was supplied. A high CO conversion (95.1%) and a high selectivity (46.0%) were attained in

Table 1
Changes in the catalytic activity in the presence/absence of SO ₂

Condition	SO ₂ in the reaction gas	CO conversion (%)	O ₂ conversion (%)	Selectivity for CO oxidation (%)
Before SO ₂ pretreatment (I)	None	99.8	99.7	33.1
At 0.5 h after the start of SO ₂ pretreatment (II)	20 ppm	99.8	99.8	33.1
At 60 h after the start of SO_2 pretreatment (III)	20 ppm	75.0	37.7	65.8
At 22 h after the SO ₂ pretreatment for $60 h$ (IV)	None	65.5	99.4	21.8
At 1.5 h after the start of SO ₂ supply to the SO ₂ -pretreated catalyst (V)	20 ppm	95.7	56.0	52.2
At 24 h after the start of SO ₂ supply to the SO ₂ -pretreated catalyst (VI)	20 ppm	77.1	45.4	56.2
At 33 h after the start of SO_2 supply to the SO_2 -pretreated catalyst (VII)	2.1 ppm	95.1	68.4	46.0

Reaction conditions: feed, 51.5 vol.% H₂, 0.3 vol.% CO, 12.9 vol.% CO₂, 0.5 vol.% O₂, 6.0 vol.% N₂, 28.8 vol.% H,O; $[O_2]/[CO] = 1.5$; temperature, ca. 150 °C; GHSV = 9260 h⁻¹; SO₂ pretreatment, 20 ppm SO₂ under the reaction condition for 60 h.

the presence of SO_2 even 33 h after the start of the supply of SO_2 of low concentration (VII).

In summary, the H_2 oxidation was promoted in the absence of SO_2 over the SO_2 -pretreated catalyst (IV), while CO was preferentially oxidized in the presence of SO_2 and unreacted O_2 was exhausted without consuming H_2 , which gave high selectivities (V, VII). However, the CO conversion decreased little by little with high selectivities kept, when SO_2 of high concentration (20 ppm) was supplied for a long term (V, VI). On the other hand, in the presence of SO_2 of low concentration (2.1 ppm), the high CO conversion was kept for a long term (VII).

To elucidate the effect of the Al_2O_3 support (θ or α), a Ru/α - Al_2O_3 catalyst with Ru loading of 1.6 g/l was pretreated with SO₂. The interruption of SO₂ promoted the H₂ oxidation, and CO was selectively oxidized in the presence of 20 ppm SO₂. The point is that the catalytic behavior did not depend on the support, but on the catalyst metal of Ru.

3.2. Influence of sulfur compounds on the activities of the SO₂-pretreated catalyst

To investigate the influence of the SO₂ concentration on the activities of the catalyst pretreated with SO₂ for 60 h, 0.21-20 ppm SO₂ was intermittently added to the reactant gas for a short term (50–100 min). The reaction was conducted over the SO₂-pretreated catalyst at the [O₂]/[CO] ratio of 1.5 and 150 °C and the results are shown in Table 2 and Fig. 1. Table 2 shows the catalytic activities 90 min after the start of sulfur compound supply, except those in the presence of 0.21 ppm sulfur com-

Table 2

Changes in the activity of the SO2-pretreated catalyst by the presence of SO2 or $\rm H_2S$

Sulfur compound in the reaction gas	CO conversion (%)	O ₂ conversion (%)	Selectivity for CO oxidation (%)
None	65.5	99.4	21.8
0.21 ppm SO ₂	89–98	87–98	30-37
2.1 ppm SO ₂	98.4	62.4	52.2
20 ppm SO ₂	95.7	56.0	56.6
0.21 ppm H ₂ S	95–99	79–98	32-41
2.1 ppm H_2S	97.4	60.8	53.1

The activities at 1.5 h after the start of sulfur compound supply were shown, except for the poisoning with 0.21 ppm sulfur compound. Reaction conditions and pretreatment conditions are the same as those shown in Table 1.

pounds. Some tests were repeated, and the high reproducibility was confirmed. In the presence of SO₂ of very low concentration (0.21 ppm), the CO conversion increased and the O₂ conversion slightly decreased (Table 2) although conversions were unstable and fluctuated. Thus, the selectivity for CO oxidation showed relatively high value of 30-37%. In the presence of SO₂ of low concentration (2.1 ppm), the CO conversion was as high as 98.4%, and the O₂ conversion was as low as 62.4% (Table 2 and Fig. 1(a)). As a result, the selectivity for CO oxidation increased to 52.2%. After SO₂ was stopped, the CO conversion immedi-

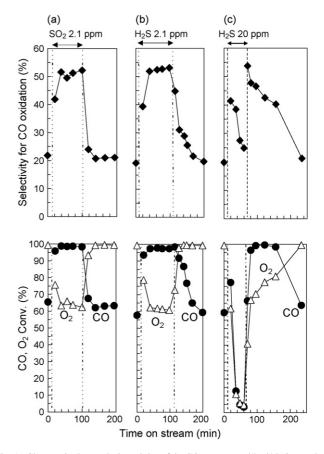


Fig. 1. Changes in the catalytic activity of the SO₂-pretreated Ru/Al₂O₃ catalyst in the presence/absence of (a) 2.1 ppm SO₂, (b) 2.1 ppm H₂S, and (c) 20 ppm H₂S. (\bullet) CO conversion, (\triangle) O₂ conversion, and (\blacklozenge) selectivity for CO oxidation. Reaction conditions and pretreatment conditions are the same as those shown in Table 1.

ately decreased to $\sim 60\%$ with an increase in the O₂ conversion to $\sim 100\%$, which showed that the H₂ oxidation was promoted. The presence of SO₂ of high concentration (20 ppm) also led to similar behavior within a short period of 90 min (Table 2).

Next, the influence of the H_2S concentration (0.21–20 ppm) on the activity of the SO₂-pretreated catalyst was examined. The results are also shown in Table 2 and Fig. 1. As shown in Fig. 1(b), H₂S of low concentration (2.1 ppm) increased the CO conversion and the selectivity as was the case of SO_2 of low concentration (2.1 ppm) (Fig. 1(a)). However, the interruption of H₂S supply resulted in a slower decrease in the CO conversion than the interruption of SO₂. We have already reported that the sulfur compounds were oxidized to SO_4^{2-} species, which migrated to the support [8]. Therefore, these results indicate that H_2S was oxidized more slowly to SO_4^{2-} species than SO_2 . In the presence of H₂S of very low concentration (0.21 ppm), the CO conversion also increased with a decrease in the O₂ conversion, though they fluctuated as was the case of SO₂ of very low concentration (0.21 ppm) (Table 2). In the presence of H_2S of high concentration (20 ppm), however, both CO and O₂ conversions significantly decreased (Fig. 1(c)), unlike in the case of SO₂ of high concentration (20 ppm) (Table 2). This also indicates that weakly adsorbed H_2S or S^{2-} species was more slowly oxidized to SO_4^{2-} species than SO_2 and accumulated on Ru, resulting in the rapid deactivation. After H₂S of high concentration was stopped, the O₂ conversion gradually increased, and the CO conversion once increased and then decreased. Both CO and O_2 conversions returned to the same as those before the H₂S supply, 170 min after the interruption of H₂S supply. The changes in the CO conversions after the interruption of H₂S of high concentration suggest that the CO conversion and the selectivity strongly depended on the coverage of the weakly adsorbed sulfur compounds, which were slowly oxidized after the interruption of H₂S supply.

The pretreatment was also conducted by H_2S instead of SO_2 . The interruption of H_2S supply promoted the H_2 oxidation, and the sulfur compound re-supply enhanced the selectivity [9]. This also suggests that H_2S was oxidized to SO_4^{2-} species.

*3.3. Dependence of the catalytic activities on the SO*₂ *pretreatment condition*

The dependence of the activities of SO₂-pretreated catalysts in the absence of sulfur compounds on the amount of supplied SO₂ for the pretreatment was investigated by changing the period of pretreatment. In Fig. 2, the abscissa presents the molar ratio of supplied SO₂ to the Ru loading, where 30 mol_S/mol_{Ru} of SO₂ corresponds to the pretreatment with 20 ppm SO₂ for 60 h. The reaction was carried out at the [O₂]/[CO] ratio of 1.5 and 150 °C. The activities were measured at 15–23 h after the SO₂ pretreatment. The catalyst pretreated with 0.5 mol_S/mol_{Ru} of SO₂ showed the same activity as the fresh one. However, the CO conversion significantly decreased to 86% at 2.0 mol_S/mol_{Ru}, and decreased further to 70% at 9.1 mol_S/mol_{Ru}. However, the CO conversion of the catalyst at 30 mol_S/mol_{Ru} was slightly lower than that at 9.1 mol_S/mol_{Ru}. On the other hand, the O₂ conversion remained ~100% irrespective of the amount of SO₂.

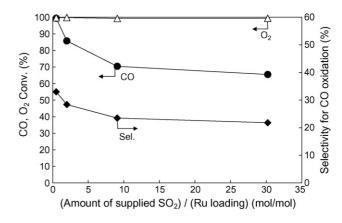


Fig. 2. Dependence of the activities of the Ru/Al₂O₃ catalysts in the absence of sulfur compounds on the amount of supplied SO₂ for the pretreatment. (\bullet) CO conversion, (\triangle) O₂ conversion, and (\blacklozenge) selectivity for CO oxidation. Reaction conditions and pretreatment conditions are the same as those shown in Table 1, except for the period of the pretreatment.

Thus, the changes in the selectivity strongly depended on the CO conversion.

Fig. 3 shows the dependence of the activities of the SO₂pretreated catalyst in the presence of SO₂ of low concentration (2.1 ppm) on the amount of supplied SO₂ for the pretreatment. After the pretreatment followed by the reaction for 15–23 h in the absence of SO₂, SO₂ was re-supplied and the activity 1.5 h after the start of SO₂ was plotted against the molar ratio of supplied SO₂ to the Ru loading. The catalyst at 2.0 mol_S/mol_{Ru} showed the same activity as that of the fresh one. The O₂ conversion decreased to 60% at 30 mol_S/mol_{Ru}, though the CO conversion remained higher than 98%. Thus, the changes in the selectivity depended on those in the O₂ conversion. At more than 9.1 mol_S/mol_{Ru}, both CO and O₂ conversions changed by the presence/absence of SO₂ of low concentration (Figs. 2 and 3).

Fig. 4 shows the dependence of the nominal Ru dispersion estimated by the CO adsorption on the amount of supplied SO₂ for the pretreatment. In this paper, the Ru dispersion was defined as the molar ratio of the amount of CO adsorbed to the amount of Ru loaded. The Ru dispersion after the reduction at 400 °C

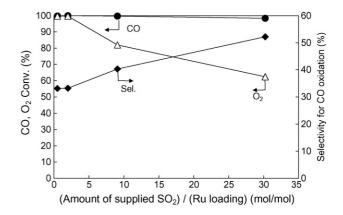


Fig. 3. Dependence of the activities of the Ru/Al₂O₃ catalysts in the presence of 2.1 ppm SO₂ on the amount of supplied SO₂ for the pretreatment. (\bullet) CO conversion, (\triangle) O₂ conversion, and (\bullet) selectivity for CO oxidation. The activity at 1.5 h after the start of SO₂ supply was plotted. Reaction conditions and pretreatment conditions are the same as those shown in Table 1, except for the period of the pretreatment.

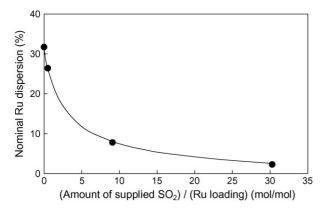


Fig. 4. Dependence of the nominal Ru dispersion estimated by the CO adsorption on the amount of supplied SO_2 for the pretreatment. Pretreatment conditions are the same as those shown in Table 1, except for the period of the pretreatment.

in a H_2 flow was lower than that after the reduction at 200 $^\circ C,$ since SO_4^{2-} species reversely spilled over from the support to Ru above 220 °C as reported in our previous study [8]. Therefore, the Ru dispersion after the reduction at 200 °C is shown in Fig. 4. Though the supplied SO₂ at 0.5 mol_S/mol_{Ru} was 1.6 times as much as the surface Ru, the Ru dispersion slightly decreased from 31.7% to 26.4%. The Ru dispersion at 9.1 mol_S/mol_{Ru} decreased to 7.8%; however, the catalyst at 30 mol_S/mol_{Ru} maintained 2.3% of the Ru dispersion. Thus, even though a large amount of SO₂ was supplied, migration of SO₄²⁻ species to the support retained some active sites, and the Ru catalyst showed high tolerance to SO₂. In addition, the rate of oxidation was fast enough to achieve 100% of O2 conversion over small numbers of active sites after the pretreatment. We have already reported that the mean size of Ru particles of a Ru catalyst (Ru loading, 3.1 g/l) increased from 1.7 to 2.7 nm by the poisoning with 48 ppm SO₂ for 8 h from TEM images, though the nominal Ru dispersion significantly decreased from 34.3% to 1.8% [8]. The XPS for the catalyst at 9.1 mol_S/mol_{Ru} showed only S⁶⁺ species, which also supports the presence of SO₄²⁻ species on Al₂O₃ and Ru. Therefore, it is implied that the decrease in the Ru dispersion was mainly caused by the SO_4^{2-} species strongly adsorbed on the Ru surface. Figs. 2 and 4 indicate that a small amount of SO₄²⁻ species strongly adsorbed on Ru selectively promoted the H₂ oxidation in the absence of sulfur compounds. On the other hand, in the presence of SO₂, the O₂ conversion decreased when the number of active sites further decreased by the weakly adsorbed sulfur compounds.

We also checked the amount of residual sulfur on the catalyst at 9.1 mol_S/mol_{Ru}, and 28% of the total SO₂ supplied was detected. Though the quantitative analysis of sulfur compounds in the effluent gas was difficult due to a high dew point (70 °C), only SO₂ was detected in the effluent gas when the dew point was low as in the case of in situ IR measurements to be given later (the dew point, 15 °C).

3.4. Temperature dependence of the catalytic activities

For practical use, it is preferable to reduce CO concentration in a wide temperature range. Thus the temperature dependence of the catalytic activities was investigated in the

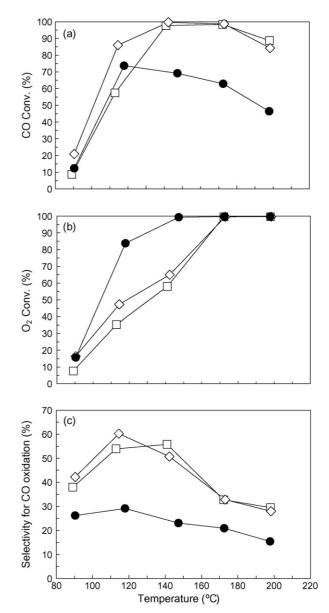


Fig. 5. Temperature dependence of the activities of the SO₂-pretreated Ru/Al₂O₃ catalyst in the presence/absence of sulfur compounds: (a) CO conversion, (b) O₂ conversion, and (c) selectivity for CO oxidation. (\bullet) In the absence of sulfur compounds, (\diamond) in the presence of 2.1 ppm SO₂, and (\Box) in the presence of 2.1 ppm H₂S. Reaction conditions and the pretreatment conditions are the same as those shown in Table 1.

presence/absence of sulfur compounds of low concentration (2.1 ppm) (Fig. 5). The catalyst pretreated for 60 h showed low CO conversions in the absence of sulfur compounds at the $[O_2]/[CO]$ ratio of 1.5 (Fig. 5(a)), which indicates that the CO oxidation was suppressed by the SO_4^{2-} species strongly adsorbed on the Ru particles. Though the fresh catalyst without the pretreatment showed constant selectivities (32–33%) at the temperature range between 120 and 190 °C due to high CO conversions (>97%) and high O₂ conversions (~100%), the SO₂-pretreated catalyst showed the maximum CO conversion and selectivity at 120 °C in the absence of sulfur compounds. When we examined the activity of the SO₂-pretreated catalyst for the reverse water–gas shift reaction in a reactant gas flow

without CO and air (52.1 vol.% H₂, 13.0 vol.% CO₂, 4.1 vol.% N₂ and 30.8 vol.% H₂O), CO was not detected even at 200 °C. Therefore, the reverse water–gas shift reaction did not cause the decrease in the CO conversion above 120 °C. Therefore, supposedly the activation of CO was suppressed in the absence of sulfur compounds, and the H₂ oxidation was enhanced with an increase in temperature, which consumed O₂ in the upper stream of the catalyst bed.

However, the SO₂-pretreated catalyst showed very high CO conversions in the presence of sulfur compounds of low concentration (2.1 ppm) especially between 145 and 175 °C. At 145 °C, O₂ was not completely consumed (Fig. 5(b)), since the H₂ oxidation was suppressed by the sulfur compounds weakly adsorbed on Ru. Above 175 °C, O₂ was completely consumed due to the increased rate of the H₂ oxidation, so that the selectivity decreased. However, the CO conversions and selectivities in the presence of sulfur compounds were higher than those in the absence of sulfur compounds, which indicates that the weakly adsorbed sulfur compounds suppressed the H₂ oxidation even at high temperature.

3.5. Dependence of the catalytic activities on the $[O_2]/[CO]$ ratios

Fig. 6 shows the dependence of the catalytic activities at $150 \,^{\circ}$ C on the [O₂]/[CO] ratios. Over the fresh catalyst without the SO₂ pretreatment, the CO conversion significantly decreased at the $[O_2]/[CO]$ ratio of 0.8, though the O_2 conversion was $\sim 100\%$ at any [O₂]/[CO] ratios (Fig. 6(a)). The selectivity increased with a decrease in the $[O_2]/[CO]$ ratios. Over the SO₂pretreated catalyst, the O_2 conversion was also ~100% in the absence of sulfur compounds at any $[O_2]/[CO]$ ratios; however, the selectivity was nearly constant (Fig. 6(b)). In other words, the ratio of the CO oxidation to the H₂ oxidation in the upper stream of catalyst bed was constant irrespective of the changes in the O₂ concentration. In the presence of 2.1 ppm SO₂, the O₂ conversion of the SO₂-pretreated catalyst was low at the $[O_2]/[CO]$ ratio of 1.5; however, it largely increased with a decrease in the [O₂]/[CO] ratio from 1.5 to 1.1 (Fig. 6(c)). The CO conversion slightly decreased with a decrease in the $[O_2]/[CO]$ ratio from 1.5 to 1.1 and significantly decreased at the $[O_2]/[CO]$ ratio of 0.8.

At the $[O_2]/[CO]$ ratio of 1.5, the selectivity for CO oxidation on the SO₂-pretreated catalyst in the presence of 2.1 ppm SO₂ was the highest at 115 °C as shown in Fig. 5(c). Similar tendency was also observed at the $[O_2]/[CO]$ ratio of 1.1 (Table 3). In the presence of 2.1 ppm SO₂, the O₂ conversion at 120 °C was lower than that at 150 °C, keeping relatively high CO conversions. So a very high selectivity (50.7%) was attained at 120 °C at the low $[O_2]/[CO]$ ratio of 1.1. It was five points higher than that (45.5%) of the fresh catalyst without the pretreatment under the same conditions, though the CO conversion was a little smaller than that of the fresh catalyst.

3.6. In situ IR measurements

In the in situ IR apparatus, the $3.8 \text{ wt}\% \text{ Ru}/\text{Al}_2\text{O}_3$ catalyst powder was pretreated with 66 ppm SO₂ at ca. $150 \degree \text{C}$ in the

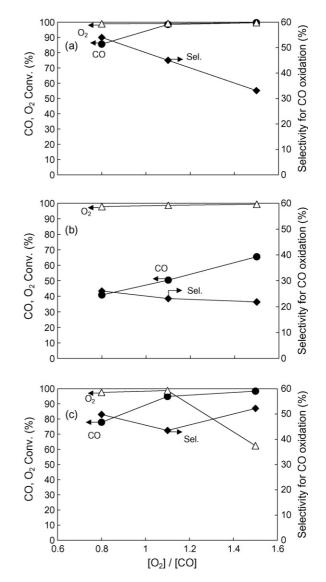


Fig. 6. Dependence of the catalytic activities at 150 °C on the $[O_2]/[CO]$ ratio: (a) in the absence of sulfur compounds over the fresh catalyst, (b) in the absence of sulfur compounds over the SO₂-pretreated catalyst, and (c) in the presence of 2.1 ppm SO₂ over the SO₂-pretreated catalyst. (\bullet) CO conversion, (\triangle) O₂ conversion, and (\blacklozenge) selectivity for CO oxidation. Reaction conditions are the same as those shown in Table 1, except for the O₂ and N₂ concentrations (0.3–0.5 vol.% O₂, 5.2–6.0 vol.% N₂). Pretreatment conditions are the same as those shown in Table 1.

reactant gas flow. Fig. 7(a) shows the in situ IR spectra over the regions of the C–O stretching vibrations and the S–O stretching vibrations before the SO₂ pretreatment (gas composition (I)). The CO bands arising from carbonyls adsorbed on Ru are generally divided into three groups: HF₁ (high-frequency 1) bands at 2156–2133 cm⁻¹, HF₂ bands at 2100–2060 cm⁻¹, and LF (low-frequency) bands at 2080–2000 cm⁻¹ [8–21]. It has been reported that the monocarbonyl species linearly adsorbed on Ru⁰ was characterized by the LF band at 2040 cm⁻¹ [12,19]. As shown in Fig. 7(a), the bands were observed at different frequencies of ca. 2030, 2000 and 1970 cm⁻¹ due to the differences in the oxidation states of Ru sites [19–23]. The band at

Table 3 Catalytic activity in the presence/absence of 2.1 ppm SO₂ at the $[O_2]/[CO]$ ratio of 1.1

Catalyst	Temperature (°C)	SO ₂ in the reaction gas	CO conversion (%)	O ₂ conversion (%)	Selectivity for CO oxidation (%)
SO ₂ -pretreated catalyst	120	2.1 ppm	95.5	85.3	50.7
SO ₂ -pretreated catalyst	150	2.1 ppm	94.9	98.8	43.5
Fresh catalyst	120	None	99.7	99.2	45.5

Reaction conditions are the same as those shown in Table 1, except for the $[O_2]/[CO]$ ratio and reaction temperature. $[O_2]/[CO] = 1.1$. The pretreatment conditions are the same as those shown in Table 1.

ca. 1970 cm^{-1} might also arise from bridge-adsorbed carbonyl species [22].

As shown in Fig. 7(b)–(d), broad absorption bands appeared at 1180 and 1260 cm⁻¹ during the SO₂ pretreatment, and the band intensities increased with time on stream. As reported in our previous study [8], the band at 1180 cm⁻¹ was assigned to the SO₄^{2–} species in bulk Al₂(SO₄)₃, while the band at 1260 cm⁻¹ was attributed to the surface SO₄^{2–} species on the Al₂O₃ support and the Ru particles.

During the SO₂ pretreatment, the HF₂ band, which lay as a shoulder peak before the SO₂ pretreatment, clearly appeared at 2068 cm⁻¹ with a decrease in the LF band intensities at ca. 1970 and 2030 cm⁻¹. It has been reported that the Ru^{*n*+}(CO)₂ dicarbonyls were characterized by a pair of the HF₂

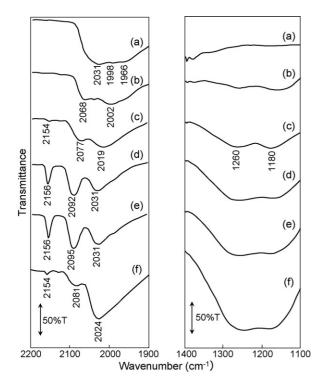


Fig. 7. In situ IR spectra over the regions of the C–O and S–O stretching vibrations at ca. 150 °C: (a) before the SO₂ pretreatment, (b) at 10 min after the start of SO₂ pretreatment (66 ppm), (c) at 30 min, (d) at 150 min, and (e) at next 60 min after the SO₂ pretreatment. (a)–(e) The spectra during the in situ SO₂ pretreatment over the 3.8 wt% Ru/Al₂O₃ catalyst. (f) The spectra in the absence of sulfur compounds (gas composition (I)) over the 2.0 wt% Ru/Al₂O₃ catalyst pretreated with SO₂ for 139 h in the fixed bed reactor. Feed, 75.5 vol.% H₂, 0.5 vol.% CO, 19.0 vol.% CO₂, 0.7 vol.% O₂, 2.7 vol.% N₂, 1.6 vol.% H₂O (gas composition (I)) or 65.6 vol.% H₂, 0.4 vol.% CO, 16.5 vol.% CO₂, 0.6 vol.% O₂, 15.5 vol.% N₂, 1.4 vol.% H₂O, 66 ppm SO₂ (gas composition (II)).

band at 2092–2045 cm⁻¹ and the LF band at 2038–1970 cm⁻¹ [21,24–35]. Therefore, it is considered that the presence of SO₂ increased the band intensity of dicarbonyls and decreased the band intensity of monocarbonyls adsorbed on Ru at 2030 cm⁻¹. In addition, the HF₁ band appeared at 2154 cm⁻¹ at 30 min and the intensity increased with time on stream (Fig. 7(c)–(d)). It has been reported that Ru^{*m*+}(CO)₃ tricarbonyls were characterized by a pair of the HF₁ and HF₂ bands [20,21,35–37] and that multicarbonyls were formed by the disruption of the Ru–Ru bonding by anionic groups [19,20]. Thus, the band at 2154 cm⁻¹ was characterized by the tricarbonyls on the Ru sites oxidized by SO₄²⁻ species. Thus, it has been found that the SO₂ supply decreased the linearly adsorbed monocarbonyls, increased the dicarbonyls and developed the tricarbonyls.

The IR spectrum of the catalyst pretreated with SO_2 for 150 min did not change even after the interruption of SO_2 supply (Fig. 7(d) and (e)). When SO_2 was re-supplied to the catalyst, the IR spectrum did not change. This indicates that the reactivity of carbonyls on the SO_2 -pretreated catalyst hardly changed by the interruption of SO_2 supply and the SO_2 re-supply.

To check the influence of a long-term SO_2 pretreatment on the IR spectra, the pellet 2.0 wt% Ru/Al₂O₃ catalyst was pretreated with 21 ppm SO₂ for 139 h in the fixed bed reactor. After it was confirmed that the catalyst showed changes in the selectivity in the presence/absence of sulfur compounds similar to those shown in Fig. 1, the catalyst was grounded, and the in situ IR spectrum was taken in the absence of sulfur compounds (gas composition (I)) (Fig. 7(f)). The dicarbonyls and tricarbonyls were observed as in the case of the in situ short-term SO_2 pretreatment. Thus, the IR spectrum for the long-term SO_2 pretreatment was essentially identical to those for the in situ short-term SO_2 pretreatment, though it differed in the degree of poisoning.

4. Discussion

Yokomizo et al. reported that the linearly adsorbed monocarbonyls were the most active species for the CO oxidation over a Ru/SiO₂ catalyst [20]. In this study, the SO₂ pretreatment decreased the linearly adsorbed monocarbonyls, disrupted the Ru–Ru bonding, and decreased the interaction between CO and Ru with a little higher oxidation state of Ru sites, which suppressed the activation of CO. As shown in Fig. 7(d) and (e), the interruption of SO₂ supply did not restore the IR spectra over the region of the C–O stretching vibrations. This indicates that the oxidized Ru was not reduced after the interruption of SO₂ supply and that the activation of CO was not restored.

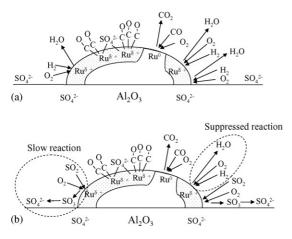


Fig. 8. Reaction models on the SO_2 -pretreated catalyst (a) in the absence of sulfur compounds and (b) in the presence of SO_2 .

In other words, SO_4^{2-} species strongly adsorbed on the oxidized Ru sites, which accumulated little by little during the SO₂ pretreatment, were not removed even after the interruption of SO₂ supply. Thus the CO oxidation was suppressed in the absence of SO_2 , and O_2 was consumed in the upper stream of the catalyst bed by the H₂ oxidation. The proposed reaction model in the absence of sulfur compounds is shown in Fig. 8(a). The SO₂ pretreatment decreased the linearly adsorbed carbonyls on Ru⁰ and decreased the CO coverage to promote the H₂ oxidation, which had been suppressed on the fresh catalyst with high CO coverage [38]. The H₂ oxidation might occur even over the partially oxidized Ru sites. Thus, the selectivity for CO oxidation decreased in the absence of sulfur compounds. In this case, CO was oxidized on the slightly remaining reduced Ru sites; however, the consumption of O_2 in the upper stream of the catalyst bed resulted in a decrease in the CO conversion.

On the other hand, in the presence of sulfur compounds, the sulfur compounds weakly adsorbed on the SO₂-pretreated catalyst were slowly oxidized to SO₄²⁻ species, most of which migrated to the support. The weakly adsorbed sulfur compounds probably covered the active sites, on which the H₂ oxidation could occur in the absence of sulfur compounds. For the H2 oxidation on Ru catalysts, it has been reported that an H atom of an adsorbed H₂ molecule formed an OH group with an adsorbed O atom and then the OH group reacted with a dissociatively adsorbed H atom to form H₂O [39]. Assuming that the OH group reacts with an H atom adsorbed on another Ru site, two vacant Ru sites, both of which are located next to the adsorbed O atom, are needed for the H₂ oxidation. On the other hand, only one vacant Ru site next to the adsorbed O atom is needed for the CO oxidation. If the coverage with the weakly adsorbed sulfur compounds is high, it is probably difficult to give two vacant sites next to the adsorbed O atom for the H₂ oxidation. In addition, the high coverage with the weakly adsorbed sulfur compounds likely suppressed the migration of the H atom, though the CO oxidation occurs without the migration of CO. As a result, the H₂ oxidation was strongly suppressed and the selectivity for CO oxidation increased.

Fig. 8(b) shows the proposed reaction model in the presence of SO₂ over the catalyst. The active sites for the CO oxidation were hardly affected by the presence of sulfur compounds in the reactant gas. When sulfur compounds of high concentration were fed for a long term (Table 1(V and VI)), the weakly adsorbed sulfur compounds accumulated on the Ru particles and then suppressed the CO oxidation, keeping high selectivities for the CO oxidation. On the other hand, in the presence of SO_2 of low concentration, high CO conversions were kept for a long term (Table 1(VII)), since the weakly adsorbed sulfur compounds were also slowly oxidized to migrate to the support. However, sulfur compounds of very low concentration (0.21 ppm) slightly increased the selectivity (Table 2). After the interruption of sulfur compound supply, they were oxidized to SO_4^{2-} species, most of which migrated to the support. Therefore, the H₂ oxidation was promoted again.

5. Conclusions

The reaction behavior of the SO₂-pretreated Ru/Al₂O₃ catalyst for the PROX was investigated in the presence/absence of sulfur compounds. The following conclusions are drawn:

- 1. After the catalyst was pretreated with SO₂ for a long term, the H₂ oxidation was promoted at ca. 150 °C in the absence of sulfur compounds. On the other hand, in the presence of 2.1 ppm sulfur compounds, the catalyst showed high selectivities (46–53%) with high CO conversions (>95%) at the $[O_2]/[CO]$ ratio of 1.5.
- 2. The in situ IR results showed that coexistent SO₂ decreased the linearly adsorbed monocarbonyls, increased the dicarbonyls and developed the tricarbonyls. This suggests that the CO oxidation was suppressed by the SO_4^{2-} species strongly adsorbed on Ru, which oxidized Ru. Thus, the H₂ oxidation was promoted in the absence of sulfur compounds. In the presence of sulfur compounds, the H₂ oxidation was suppressed by the weakly adsorbed sulfur compounds, which were slowly oxidized and migrated to the support.

Acknowledgement

The authors are grateful to the New Energy and Industrial Technology Development Organization for financial support in the form of a grant.

References

- [1] S.H. Oh, R.M. Sinkevitch, J. Catal. 142 (1993) 254.
- [2] M. Echigo, T. Tabata, Appl. Catal. A 251 (2003) 157.
- [3] K. Ukai, Y. Yamamoto, T. Ueda, H. Gyoten, T. Shibata, Proceedings of International Fuel Cell Workshop, Kofu, Japan, November 12–13, 2001, p. 74.
- [4] G. Avgourpoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157.
- [5] E. Newson, T.B. Truong, N. De Silva, A. Fleury, R. Ijpelaar, in: M. Anpo, M. Onaka, H. Yamashita (Eds.), Science and Technology in Catalysis 2002, Kodansha/Elsevier, 2003, p. 391.

- [6] I.H. Son, A.M. Lane, D.T. Johnson, J. Power Sources 124 (2003) 415.
- [7] C. Song, Catal. Today 77 (2002) 17.
- [8] H. Wakita, Y. Kani, K. Ukai, T. Tomizawa, T. Takeguchi, W. Ueda, Appl. Catal. A 283 (2005) 53.
- [9] H. Wakita, T. Takeguchi, W. Ueda, Abstracts of the 5th Tokyo Conference on Advanced Catalytic Science and Technology, Tokyo, July 23–28, 2006, p. 533.
- [10] L. Lynds, Specrochim. Acta 20 (1964) 1369.
- [11] M. Kobayashi, T. Shirasaki, J. Catal. 28 (1973) 289.
- [12] M.F. Brown, R.D. Gonzalez, J. Phys. Chem. 80 (1976) 1731.
- [13] A.A. Davydov, A.T. Bell, J. Catal. 49 (1977) 332.
- [14] H. Yamasaki, Y. Kobori, S. Naito, T. Onishi, K. Tamaru, J. Chem. Soc., Faraday Trans. 1 77 (1981) 2913.
- [15] R.D. Gonzalez, H. Miura, J. Catal. 77 (1982) 338.
- [16] N.W. Cant, A.T. Bell, J. Catal. 73 (1982) 257.
- [17] J.T. Kiss, R.D. Gonzalez, J. Phys. Chem. 88 (1984) 892.
- [18] M.M. McClory, R.D. Gonzalez, J. Catal. 89 (1984) 392.
- [19] H.W. Chen, Z. Zhong, J.M. White, J. Catal. 90 (1984) 119.
- [20] G.H. Yokomizo, C. Louis, A.T. Bell, J. Catal. 120 (1989) 1.
- [21] K. Hadjiivanov, J.-C. Lavalley, J. Lamotte, F. Maugé, J. Saint-Just, M. Che, J. Catal. 176 (1998) 415.
- [22] N.M. Gupta, V.P. Londhe, V.S. Kamble, J. Catal. 169 (1997) 423.
- [23] S.F. Abdo, K.M. VandenBussche, D.R. Sioui, T.M. Mezza, S.R. Bare, Am. Chem. Soc., Fuel Chem. Div. 47 (2002) 549 (Preprints of Papers).
- [24] E. Guglielminotti, A. Zecchina, A. Bossi, M. Camia, J. Catal. 74 (1982) 240.

- [25] G.M. Zanderighi, C. Dossi, R. Ugo, R. Psaro, A. Theolier, A. Choplin, L. D'Ornelas, J.M. Basset, J. Organomet. Chem. 296 (1985) 127.
- [26] L. D'Ornelas, A. Theolier, A. Choplin, J.M. Basset, Inorg. Chem. 27 (1988) 1261.
- [27] I. Burkhardt, D. Gudtschick, H. Landmesser, H. Miessner, in: P.A. Jacobs, et al. (Eds.), Zeolite Chemistry and Catalysis, Elsevier, Amsterdam, 1991, p. 215.
- [28] H. Knözinger, Y. Zhao, B. Tesche, R. Barth, R. Epstein, B.C. Gates, J.P. Scott, Faraday Discuss. Chem. Soc. 72 (1985) 53.
- [29] E. Guglielminotti, F. Boccuzi, in: C. Morterra, A. Zecchina, G. Costa (Eds.), Structure and Reactivity of Surfaces, Elsevier, Amsterdam, 1989, p. 473.
- [30] E. Guglielminotti, G.C. Bond, J. Chem. Soc., Faraday Trans. 86 (1990) 979.
- [31] A. Beck, S. Dobos, L. Guczi, Inorg. Chem. 27 (1988) 3220.
- [32] E. Guglielminotti, Langmuir 2 (1986) 812.
- [33] S. Uchiyama, B.C. Gates, J. Catal. 110 (1988) 388.
- [34] J. Evans, G.S. McNulty, J. Chem. Soc., Dalton Trans. 80 (1984) 1123.
- [35] H. Landmesser, H. Miessner, J. Phys. Chem. 95 (1991) 10544.
- [36] N.M. Gupta, V.S. Kamble, R.M. Iyer, K.R. Thampi, M. Grätzel, J. Catal. 137 (1992) 473.
- [37] J.L. Robbins, J. Catal. 115 (1989) 120.
- [38] Y.-F. Han, M.J. Kahlich, M. Kinne, R.J. Behm, Phys. Chem. Chem. Phys. 4 (2002) 389.
- [39] M. Knapp, D. Crinhan, A.P. Seitsonen, H. Over, J. Am. Chem. Soc. 127 (2005) 3236.